Tuesday, September 10, 2024
HomeNanotechnologyA synthetic metabzyme for tumour-cell-specific metabolic remedy

A synthetic metabzyme for tumour-cell-specific metabolic remedy


  • Elia, I. & Haigis, M. C. Metabolites and the tumour microenvironment: from mobile mechanisms to systemic metabolism. Nat. Metab. 3, 21–32 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaghlool, S. B. et al. Metabolic and proteomic signatures of kind 2 diabetes subtypes in an Arab inhabitants. Nat. Commun. 13, 7121 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faubert, B., Solmonson, A. & DeBerardinis, R. J. Metabolic reprogramming and most cancers development. Science 368, eaaw5473 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, C. H., Leone, R. D., Horton, M. R. & Powell, J. D. Focusing on metabolism to control immune responses in autoimmunity and most cancers. Nat. Rev. Drug Discov. 18, 669–688 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stine, Z. E., Schug, Z. T., Salvino, J. M. & Dang, C. V. Focusing on most cancers metabolism within the period of precision oncology. Nat. Rev. Drug Discov. 21, 141–162 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goga, A. & Stoffel, M. Therapeutic RNA-silencing oligonucleotides in metabolic illnesses. Nat. Rev. Drug Discov. 21, 417–439 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tandon, S., Sharma, A., Singh, S., Sharma, S. & Sarma, S. J. Therapeutic enzymes: discoveries, manufacturing and purposes. J. Drug Deliv. Sci. Technol. 63, 102455 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Martínez-Reyes, I. & Chandel, N. S. Most cancers metabolism: wanting ahead. Nat. Rev. Most cancers 21, 669–680 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, C. et al. Hydrogen-bonded natural framework-based bioorthogonal catalysis prevents drug metabolic inactivation. Nat. Catal. 6, 729–739 (2023).

  • Huang, Y., Ren, J. & Qu, X. Nanozymes: classification, catalytic mechanisms, exercise regulation, and purposes. Chem. Rev. 119, 4357–4412 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, W. et al. Deciphering the catalytic mechanism of superoxide dismutase exercise of carbon dot nanozyme. Nat. Commun. 14, 160 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, R., Fan, Okay. & Yan, X. Nanozymes: created by studying from nature. Sci. China Life Sci. 63, 1183–1200 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Ji, S. et al. Matching the kinetics of pure enzymes with a single-atom iron nanozyme. Nat. Catal. 4, 407–417 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, W. et al. Nanozymes: exercise origin, catalytic mechanism, and organic software. Coord. Chem. Rev. 448, 214170 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lee, B.-H. et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 18, 620–626 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J. et al. Modulating the sturdy metal-support interplay of single-atom catalysts by way of vicinal construction ornament. Nat. Commun. 13, 4244 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Metz, S. & Thiel, W. Theoretical research on the reactivity of molybdenum enzymes. Coord. Chem. Rev. 255, 1085–1103 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Solar, Q. et al. Lack of xanthine oxidoreductase potentiates propagation of hepatocellular carcinoma stem cells. Hepatology 71, 2033–2049 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monji, F., Al-Mahmood Siddiquee, A. & Hashemian, F. Can pentoxifylline and related xanthine derivatives discover a area of interest in COVID-19 therapeutic methods? A ray of hope within the midst of the pandemic. Eur. J. Pharmacol. 887, 173561 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Uric acid enhances the antitumor immunity of dendritic cell-based vaccine. Sci. Rep. 5, 16427 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Man-man, C. & Ling-hua, M. The double confronted function of xanthine oxidoreductase in most cancers. Acta Pharmacol. Sin. 43, 1623–1632 (2022).

    Article 

    Google Scholar
     

  • Veiras, L. C. et al. Tubular IL-1β induces salt sensitivity in diabetes by activating renal macrophages. Circ. Res. 131, 59–73 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haryono, A., Nugrahaningsih, D. A. A., Sari, D. C. R., Romi, M. M. & Arfian, N. Discount of serum uric acid related to attenuation of renal harm, irritation and macrophages M1/M2 ratio in hyperuricemic mice mannequin. Kobe J. Med. Sci. 64, e107–e114 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity in opposition to tumors. Nat. Med. 15, 1170–1178 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deets, Okay. A. & Vance, R. E. Inflammasomes and adaptive immune responses. Nat. Immunol. 22, 412–422 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, X. et al. Biodegradation-mediated enzymatic activity-tunable molybdenum oxide nanourchins for tumor-specific cascade catalytic remedy. J. Am. Chem. Soc. 142, 1636–1644 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coquet, R. & Willock, D. J. The (010) floor of α-MoO3, a DFT + U examine. Phys. Chem. Chem. Phys. 7, 3819–3828 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H.-S. et al. Oxygen vacancies improve pseudocapacitive cost storage properties of MoO3−x. Nat. Mater. 16, 454–460 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: information evaluation for X-ray absorption spectroscopy utilizing IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiao, W. et al. Development of lively orbital by way of single-atom cobalt anchoring on the floor of 1T-MoS2 basal aircraft towards environment friendly hydrogen evolution. ACS Appl. Power Mater. 3, 2315–2322 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dong, C. et al. Singlet oxygen triggered by strong bimetallic MoFe/TiO2 nanospheres of extremely efficacy in solar-light-driven peroxymonosulfate activation for natural pollution removing. Appl. Catal. B 286, 119930 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Du, Y. et al. Computational exploration of reactive fragment for mechanism-based inhibition of xanthine oxidase. J. Organomet. Chem. 864, 58–67 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, D. et al. Nanomedicine in most cancers remedy. Sign Transduct. Goal. Ther. 8, 293 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. et al. Dynamically switchable magnetic resonance imaging distinction brokers. Exploration 1, 20210009 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lengthy, E. R. The purines and purine metabolism of some tumors in home animals. J. Exp. Med. 18, 512–526 (1913).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, H. et al. Xanthine oxidase-mediated oxidative stress promotes most cancers cell-specific apoptosis. Free Radic. Bio. Med. 139, 70–79 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Finger, E. C. et al. Hypoxic induction of AKAP12 variant 2 shifts PKA-mediated protein phosphorylation to reinforce migration and metastasis of melanoma cells. Proc. Natl Acad. Sci. USA 112, 4441–4446 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garris, C. S. et al. Profitable anti-PD-1 most cancers immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity 49, 1148–1161.e7 (2018).

  • Zhang, Z. et al. Gasdermin E suppresses tumour development by activating anti-tumour immunity. Nature 579, 415–420 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, N., Sheppard, N. C., Billingsley, M. M., June, C. H. & Mitchell, M. J. Nanomaterials for T-cell most cancers immunotherapy. Nat. Nanotechnol. 16, 25–36 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamaguchi, H., Hsu, J.-M., Yang, W.-H. & Hung, M.-C. Mechanisms regulating PD-L1 expression in cancers and related alternatives for novel small-molecule therapeutics. Nat. Rev. Clin. Oncol. 19, 287–305 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to reinforce anti-PD-L1 remedy for malignant pleural effusion. Nat. Nanotechnol. 17, 206–216 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kao, Okay.-C., Vilbois, S., Tsai, C.-H. & Ho, P.-C. Metabolic communication within the tumour–immune microenvironment. Nat. Cell Biol. 24, 1574–1583 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Propper, D. J. & Balkwill, F. R. Harnessing cytokines and chemokines for most cancers remedy. Nat. Rev. Clin. Oncol. 19, 237–253 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, A. C. & Zappasodi, R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular foundation for immune sensitivity and resistance. Nat. Immunol. 23, 660–670 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Metabolic modulation of immune checkpoints and novel therapeutic methods in most cancers. Semin. Most cancers Biol. 86, 542–565 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oaks, Z. et al. Cytosolic aldose metabolism contributes to development from cirrhosis to hepatocarcinogenesis. Nat. Metabol. 5, 41–60 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Luzzatto, L., Ally, M. & Notaro, R. Glucose-6-phosphate dehydrogenase deficiency. Blood 136, 1225–1240 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, J. et al. SLAMF7 is vital for phagocytosis of haematopoietic tumour cells by way of Mac-1 integrin. Nature 544, 493–497 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Unen, V. et al. Visible evaluation of mass cytometry information by hierarchical stochastic neighbour embedding reveals uncommon cell sorts. Nat. Commun. 8, 1740 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, J. et al. Selective oxidative safety results in tissue topological modifications orchestrated by macrophage throughout ulcerative colitis. Nat. Commun. 14, 3675 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palmer, A. et al. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nat. Strategies 14, 57–60 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, G. et al. Analyzing cell-type-specific dynamics of metabolism in kidney restore. Nat. Metab. 4, 1109–1118 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments