Elia, I. & Haigis, M. C. Metabolites and the tumour microenvironment: from mobile mechanisms to systemic metabolism. Nat. Metab. 3, 21–32 (2021).
Zaghlool, S. B. et al. Metabolic and proteomic signatures of kind 2 diabetes subtypes in an Arab inhabitants. Nat. Commun. 13, 7121 (2022).
Faubert, B., Solmonson, A. & DeBerardinis, R. J. Metabolic reprogramming and most cancers development. Science 368, eaaw5473 (2020).
Patel, C. H., Leone, R. D., Horton, M. R. & Powell, J. D. Focusing on metabolism to control immune responses in autoimmunity and most cancers. Nat. Rev. Drug Discov. 18, 669–688 (2019).
Stine, Z. E., Schug, Z. T., Salvino, J. M. & Dang, C. V. Focusing on most cancers metabolism within the period of precision oncology. Nat. Rev. Drug Discov. 21, 141–162 (2022).
Goga, A. & Stoffel, M. Therapeutic RNA-silencing oligonucleotides in metabolic illnesses. Nat. Rev. Drug Discov. 21, 417–439 (2022).
Tandon, S., Sharma, A., Singh, S., Sharma, S. & Sarma, S. J. Therapeutic enzymes: discoveries, manufacturing and purposes. J. Drug Deliv. Sci. Technol. 63, 102455 (2021).
Martínez-Reyes, I. & Chandel, N. S. Most cancers metabolism: wanting ahead. Nat. Rev. Most cancers 21, 669–680 (2021).
Huang, C. et al. Hydrogen-bonded natural framework-based bioorthogonal catalysis prevents drug metabolic inactivation. Nat. Catal. 6, 729–739 (2023).
Huang, Y., Ren, J. & Qu, X. Nanozymes: classification, catalytic mechanisms, exercise regulation, and purposes. Chem. Rev. 119, 4357–4412 (2019).
Gao, W. et al. Deciphering the catalytic mechanism of superoxide dismutase exercise of carbon dot nanozyme. Nat. Commun. 14, 160 (2023).
Zhang, R., Fan, Okay. & Yan, X. Nanozymes: created by studying from nature. Sci. China Life Sci. 63, 1183–1200 (2020).
Ji, S. et al. Matching the kinetics of pure enzymes with a single-atom iron nanozyme. Nat. Catal. 4, 407–417 (2021).
Yang, W. et al. Nanozymes: exercise origin, catalytic mechanism, and organic software. Coord. Chem. Rev. 448, 214170 (2021).
Lee, B.-H. et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 18, 620–626 (2019).
Yang, J. et al. Modulating the sturdy metal-support interplay of single-atom catalysts by way of vicinal construction ornament. Nat. Commun. 13, 4244 (2022).
Metz, S. & Thiel, W. Theoretical research on the reactivity of molybdenum enzymes. Coord. Chem. Rev. 255, 1085–1103 (2011).
Solar, Q. et al. Lack of xanthine oxidoreductase potentiates propagation of hepatocellular carcinoma stem cells. Hepatology 71, 2033–2049 (2020).
Monji, F., Al-Mahmood Siddiquee, A. & Hashemian, F. Can pentoxifylline and related xanthine derivatives discover a area of interest in COVID-19 therapeutic methods? A ray of hope within the midst of the pandemic. Eur. J. Pharmacol. 887, 173561 (2020).
Wang, Y. et al. Uric acid enhances the antitumor immunity of dendritic cell-based vaccine. Sci. Rep. 5, 16427 (2015).
Man-man, C. & Ling-hua, M. The double confronted function of xanthine oxidoreductase in most cancers. Acta Pharmacol. Sin. 43, 1623–1632 (2022).
Veiras, L. C. et al. Tubular IL-1β induces salt sensitivity in diabetes by activating renal macrophages. Circ. Res. 131, 59–73 (2022).
Haryono, A., Nugrahaningsih, D. A. A., Sari, D. C. R., Romi, M. M. & Arfian, N. Discount of serum uric acid related to attenuation of renal harm, irritation and macrophages M1/M2 ratio in hyperuricemic mice mannequin. Kobe J. Med. Sci. 64, e107–e114 (2018).
Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity in opposition to tumors. Nat. Med. 15, 1170–1178 (2009).
Deets, Okay. A. & Vance, R. E. Inflammasomes and adaptive immune responses. Nat. Immunol. 22, 412–422 (2021).
Hu, X. et al. Biodegradation-mediated enzymatic activity-tunable molybdenum oxide nanourchins for tumor-specific cascade catalytic remedy. J. Am. Chem. Soc. 142, 1636–1644 (2020).
Coquet, R. & Willock, D. J. The (010) floor of α-MoO3, a DFT + U examine. Phys. Chem. Chem. Phys. 7, 3819–3828 (2005).
Kim, H.-S. et al. Oxygen vacancies improve pseudocapacitive cost storage properties of MoO3−x. Nat. Mater. 16, 454–460 (2017).
Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: information evaluation for X-ray absorption spectroscopy utilizing IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).
Qiao, W. et al. Development of lively orbital by way of single-atom cobalt anchoring on the floor of 1T-MoS2 basal aircraft towards environment friendly hydrogen evolution. ACS Appl. Power Mater. 3, 2315–2322 (2020).
Dong, C. et al. Singlet oxygen triggered by strong bimetallic MoFe/TiO2 nanospheres of extremely efficacy in solar-light-driven peroxymonosulfate activation for natural pollution removing. Appl. Catal. B 286, 119930 (2021).
Du, Y. et al. Computational exploration of reactive fragment for mechanism-based inhibition of xanthine oxidase. J. Organomet. Chem. 864, 58–67 (2018).
Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).
Fan, D. et al. Nanomedicine in most cancers remedy. Sign Transduct. Goal. Ther. 8, 293 (2023).
Wang, Q. et al. Dynamically switchable magnetic resonance imaging distinction brokers. Exploration 1, 20210009 (2021).
Lengthy, E. R. The purines and purine metabolism of some tumors in home animals. J. Exp. Med. 18, 512–526 (1913).
Xu, H. et al. Xanthine oxidase-mediated oxidative stress promotes most cancers cell-specific apoptosis. Free Radic. Bio. Med. 139, 70–79 (2019).
Finger, E. C. et al. Hypoxic induction of AKAP12 variant 2 shifts PKA-mediated protein phosphorylation to reinforce migration and metastasis of melanoma cells. Proc. Natl Acad. Sci. USA 112, 4441–4446 (2015).
Garris, C. S. et al. Profitable anti-PD-1 most cancers immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity 49, 1148–1161.e7 (2018).
Zhang, Z. et al. Gasdermin E suppresses tumour development by activating anti-tumour immunity. Nature 579, 415–420 (2020).
Gong, N., Sheppard, N. C., Billingsley, M. M., June, C. H. & Mitchell, M. J. Nanomaterials for T-cell most cancers immunotherapy. Nat. Nanotechnol. 16, 25–36 (2021).
Yamaguchi, H., Hsu, J.-M., Yang, W.-H. & Hung, M.-C. Mechanisms regulating PD-L1 expression in cancers and related alternatives for novel small-molecule therapeutics. Nat. Rev. Clin. Oncol. 19, 287–305 (2022).
Liu, Y. et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to reinforce anti-PD-L1 remedy for malignant pleural effusion. Nat. Nanotechnol. 17, 206–216 (2022).
Kao, Okay.-C., Vilbois, S., Tsai, C.-H. & Ho, P.-C. Metabolic communication within the tumour–immune microenvironment. Nat. Cell Biol. 24, 1574–1583 (2022).
Propper, D. J. & Balkwill, F. R. Harnessing cytokines and chemokines for most cancers remedy. Nat. Rev. Clin. Oncol. 19, 237–253 (2022).
Huang, A. C. & Zappasodi, R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular foundation for immune sensitivity and resistance. Nat. Immunol. 23, 660–670 (2022).
Wang, Y. et al. Metabolic modulation of immune checkpoints and novel therapeutic methods in most cancers. Semin. Most cancers Biol. 86, 542–565 (2022).
Oaks, Z. et al. Cytosolic aldose metabolism contributes to development from cirrhosis to hepatocarcinogenesis. Nat. Metabol. 5, 41–60 (2023).
Luzzatto, L., Ally, M. & Notaro, R. Glucose-6-phosphate dehydrogenase deficiency. Blood 136, 1225–1240 (2020).
Chen, J. et al. SLAMF7 is vital for phagocytosis of haematopoietic tumour cells by way of Mac-1 integrin. Nature 544, 493–497 (2017).
van Unen, V. et al. Visible evaluation of mass cytometry information by hierarchical stochastic neighbour embedding reveals uncommon cell sorts. Nat. Commun. 8, 1740 (2017).
Du, J. et al. Selective oxidative safety results in tissue topological modifications orchestrated by macrophage throughout ulcerative colitis. Nat. Commun. 14, 3675 (2023).
Palmer, A. et al. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nat. Strategies 14, 57–60 (2017).
Wang, G. et al. Analyzing cell-type-specific dynamics of metabolism in kidney restore. Nat. Metab. 4, 1109–1118 (2022).